
Abstract Interpretation, Symbolic Execution and
Constraints
Roberto Amadini
University of Bologna, Italy
https://www.unibo.it/sitoweb/roberto.amadini/en
roberto.amadini@unibo.it

Graeme Gange
Monash University, Clayton, Australia
https://research.monash.edu/en/persons/graeme-gange
graeme.gange@monash.edu

Peter Schachte
The University of Melbourne, Australia
https://people.eng.unimelb.edu.au/schachte/
schachte@unimelb.edu.au

Harald Søndergaard
The University of Melbourne, Australia
https://people.eng.unimelb.edu.au/harald/
harald@unimelb.edu.au

Peter J. Stuckey
Monash University, Clayton, Australia
https://research.monash.edu/en/persons/peter-stuckey
peter.stuckey@monash.edu

Abstract
Abstract interpretation is a static analysis framework for sound over-approximation of all possible
runtime states of a program. Symbolic execution is a framework for reachability analysis which
tries to explore all possible execution paths of a program. A shared feature between abstract
interpretation and symbolic execution is that each – implicitly or explicitly – maintains constraints
during execution, in the form of invariants or path conditions. We investigate the relations between
the worlds of abstract interpretation, symbolic execution and constraint solving, to expose potential
synergies.

2012 ACM Subject Classification Theory of computation → Program analysis; Theory of computa-
tion → Invariants; Software and its engineering → Software maintenance tools; Software and its
engineering → Software testing and debugging

Keywords and phrases Abstract interpretation, symbolic execution, constraint solving, dynamic
analysis, static analysis

Digital Object Identifier 10.4230/OASIcs.Gabbrielli.2020.7

Acknowledgements We wish to thank the anonymous reviewers for their detailed and constructive
suggestions.

1 Introduction

The abstract interpretation framework proposed by Cousot and Cousot in the 1970s [14, 15]
provides an elegant and generic approach for static analysis. Under certain reasonable
assumptions, this method is guaranteed to terminate with a sound abstraction of all the
possible program traces.

© Roberto Amadini, Graeme Gange, Peter Schachte, Harald Søndergaard, and Peter J. Stuckey;
licensed under Creative Commons License CC-BY

Recent Developments in the Design and Implementation of Programming Languages.
Editors: Frank S. de Boer and Jacopo Mauro; Article No. 7; pp. 7:1–7:19

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1668-7305
https://www.unibo.it/sitoweb/roberto.amadini/en
mailto:roberto.amadini@unibo.it
https://orcid.org/0000-0002-1354-431X
https://research.monash.edu/en/persons/graeme-gange
mailto:graeme.gange@monash.edu
https://orcid.org/0000-0001-5959-3769
https://people.eng.unimelb.edu.au/schachte/
mailto:schachte@unimelb.edu.au
https://orcid.org/0000-0002-2352-1883
https://people.eng.unimelb.edu.au/harald/
mailto:harald@unimelb.edu.au
https://orcid.org/0000-0003-2186-0459
https://research.monash.edu/en/persons/peter-stuckey
mailto:peter.stuckey@monash.edu
https://doi.org/10.4230/OASIcs.Gabbrielli.2020.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

7:2 Abstract Interpretation, Symbolic Execution and Constraints

Since different information is pertinent in different contexts and applications, each analysis
specifies the abstraction of the computation state to use: the abstract domain of the analysis.
Each element of the abstract domain is an abstract value that approximates a set of “concrete”
values, i.e., values that a variable can take during the program execution.

The most common form of abstract interpretation mimics forward program execution in
such a manner that it eventually over-approximates the set of possible run-time states, for
all possible input values, with corresponding abstract values. Abstract interpretation thus
provides a method for invariant generation – it produces, in finite time, a valid invariant for
each program point, including the start and the end of loop bodies. Whether these invariants
are useful for whatever task is at hand may depend on the granularity of the chosen abstract
domain.

The first symbolic execution tools [8, 25] were developed around the same time as the
abstract interpretation framework. The main idea behind symbolic execution is to use
symbolic expressions instead of concrete values to explore the possible program paths and
reasoning about the conditions under which the program execution will branch this way or
that. The constraints leading to a particular path being taken are called path conditions,
so that a given path is feasible if and only if the corresponding path condition is satisfiable.
This enables symbolic execution to perform reachability analysis.

The early work on symbolic execution saw the technique as an important aid in the
systematic testing and debugging [8, 25] and those applications remain the most common.
However, it has been noted that Burstall’s technique [9] for proving total correctness of
programs also involves the use of symbolic execution. (Burstall used the term “hand
simulation”, and his technique has since been referred to as the “sometime” method, and
also as the “intermittent assertion” method.) The method associates, with a program point
p, assertions of the form “control will, sometime during execution, reach p with the program
state satisfying ϕ” (note that there is no claim that this will be the case every time control
reaches p). Showing that a program terminates and satisfies a specification ϕ thus boils
down to being able to associate ϕ (or something that entails it) with each exit point of the
program. As with the more commonly known invariant assertion method, the intermittent
assertion methods relies on the discovery of suitable lemmas and their proof by induction.
Unlike the invariant assertion method, it can establish total correctness.

In this paper we mainly have the less ambitious “debugging” use of symbolic execution in
mind. We note, however, that there is continued development of deductive verification systems
that utilise the idea behind Burstall’s method and its application of symbolic execution. We
discuss such systems in Section 6. One, the KeY project [1], is of particular interest, as it
extends the symbolic execution mechanism with an invariant generation ability, using ideas
from abstract interpretation.

At first glance, symbolic execution may seem very similar to abstract interpretation.
Both are methods for abstracting the runtime behaviour of a program across all its possible
input values. However, while abstract interpretation is naturally considered a static analysis,
we contend that symbolic execution is for all intents a dynamic analysis for a number of
reasons. First, symbolic execution always executes the target program, even if symbolically,
in a forward manner. Second, symbolic execution cannot by itself guarantee that all the
possible paths are covered. Unless aided by some external oracle, symbolic execution under-
approximates the set of possible runtime states with a number of path conditions. As a
dynamic analysis, symbolic execution can produce witnesses of fault, but it offers weak
guarantees for coverage and termination. In particular symbolic execution runs the risk
of “getting caught” in loops. Verification tools based on symbolic execution make use of a
variety of techniques to remedy the situation, such as requiring users to suggest invariants.

R. Amadini, G. Gange, P. Schachte, H. Søndergaard, and P. J. Stuckey 7:3

In contrast, static analyses produce alarms, including false alarms, they tend to rely on
intrinsic conditions and, in principle at least, provide strong guarantees for termination and
coverage. Because dynamic analysis focuses on (possibly long) program paths, it is able to
find relations among program entities that may be textually far apart. Static analysis instead
usually performs detailed, but local, analysis, detailed only within basic blocks or functions.

A connecting point between abstract interpretation and symbolic execution is that they
both – implicitly or explicitly – collect and solve a number of constraints along their execution.

For abstract interpretation, the constraints are implicitly collected during the abstract
execution in the form of invariants, which are relations over the program variables. The
constraint perspective becomes more evident when we have relational abstract domains
involving different variables. For example, if we use the polyhedra [16] or the octagon [27]
abstract domain we explicitly collect and update linear constraints over the program variables.

The relation between symbolic execution and constraint solving is more straightforward.
The path conditions collected by the symbolic engine are constraints over the variables
occurring at each branching point of the program. The test for satisfiability is delegated
to a constraint solver. Its role is crucial for symbolic execution, because its efficiency and
expressiveness can strongly affect the performance of the program analysis. As we shall see
in Section 3, this is even more true for concolic testing, a hybrid technique based on symbolic
execution where the constraint solver is used to generate the next input to test according to
the last path condition explored.

In this paper we study the relationship between abstract interpretation, symbolic execution
and constraint solving. Based on a small Turing complete language, L, we first define the
semantics of symbolic execution over L by specifying how constraints are collected, updated
and solved during the execution. Then, after describing the abstract interpretation of L, we
show how these techniques are complementary and can help each other to get an overall
better program analysis. In particular, we focus on how abstract interpretation may help
symbolic execution escape loops through simple program transformations.

Paper structure: Section 2 gives some technical background notions. In Section 3 we
explain symbolic (and concolic) execution, and in Section 4 we cover abstract interpretation.
Section 5 discusses the relationships between the above techniques, before reporting the
related literature in Section 6 and concluding in Section 7.

2 Preliminaries

2.1 Constraint solving
As with abstract interpretation and symbolic execution, the theory of constraint solving
dates back to the 1970s [28, 26]. Although there is not a univocal definition, we can
informally refer to constraint solving – or constraint satisfaction – as the process of finding
a solution to a problem whose variables are subject to a number of constraints restricting
their domains. More formally, we can define constraint solving as the process of finding a
solution to a constraint satisfaction problem (CSP), which is a triple P = (X ,D, C) where:
X = {x1, . . . , xn} is a set of variables; D = {D1, . . . , Dn} is a set of domains, where domain
Di contains the possible values that xi can take for i = 1, . . . , n; C = {C1, . . . , Cm} is a set
of constraints over the variables of X .

Finding a solution of P means finding a consistent assignment of domain values to
variables. Formally, a solution is a map ξ : X →

⋃
D such that ξ(xi) ∈ Di for i = 1, . . . , n

and C(ξ(xi1), . . . , ξ(xik)) holds for each constraint C ∈ C over variables xi1 , . . . , xik . If P
admits a solution ξ, then it is called satisfiable and we will write ξ |= P . If no solution exists,

Gabbrielli’s Festschrift

7:4 Abstract Interpretation, Symbolic Execution and Constraints

then P is unsatisfiable and we will write P |= ⊥. Note that P 6|= ⊥ denotes a satisfiable
problem P without specifying a solution for it (i.e., P 6|= ⊥ iff there exists ξ : X →

⋃
D such

that ξ |= P). As a small abuse of notation, we extend this notation to constraints: if C ∈ C is
defined over variables xi1 , . . . , xik , then ξ |= C means that C(ξ(xi1), . . . , ξ(xik)) holds, while
C 6|= ⊥ (resp., C |= ⊥) means that C is satisfiable (resp., unsatisfiable).

The definition of CSP is very general, because no limits are posed on the type of the
domains (e.g., they can be integers, reals, rationals, strings, arrays, and so on), or on the
type of the constraints to be solved. According to the type of domain and constraints, and
the way constraints are solved, different paradigms have been proposed, e.g., Boolean satisfia-
bility/satisfiability modulo theory [7], constraint programming [31], linear programming [17],
and so on.

2.2 Abstract interpretation
Abstract interpretation is a framework for the sound over-approximation of program compu-
tations. Let S be the set of concrete values that a program variable can take (e.g., integers,
floating point, strings, . . .) in any possible concrete execution. The concrete domain C = P(S)
is defined as the powerset of S, and a sound abstraction of C is given by an abstract domain
A for C and a concretization function γ : A → C inducing a partial order v over A such that
a v a′ ⇐⇒ γ(a) ⊆ γ(a′) for each a, a′ ∈ A. Typically, a domain A is equipped with an
order that makes it a lattice A = 〈A,v,u,t,⊥,>〉, where t and u are the meet and join
operations, respectively, according to v, and ⊥ and > are unique least and greatest elements
of A, respectively1. Choosing an abstract domain is a compromise between its precision (how
faithfully it can approximate a concrete domain) and the computational cost of conducting
the analysis with it.

The “abstract lattice” A is typically connected to the “concrete lattice” C = 〈C,⊆
,∩,∪, ∅,S〉 via an abstraction function α : C → A mapping concrete elements to corresponding
abstract elements. The pair (α, γ) often forms a Galois connection, i.e., α(C) v a ⇐⇒ C ⊆
γ(a) for each a ∈ A, C ∈ C. Having a Galois connection corresponds to the existence of a
unique best abstraction for each C ∈ C.

Termination of abstract execution can be guaranteed, even in the presence of loops. In
some cases, so-called widening operators [12] are required to achieve this (or sometimes
just to accelerate convergence). A widening operator ∇ for abstract domain A satisfies two
conditions: (i) a, a′ v a∇a′ for any a, a′ ∈ A, and (ii) for any sequence a0, a1, a2, · · · ∈ A
the sequence b0, b1, b2, . . . with b0 = a0 and bi = bi−1∇ai for i > 0 is ultimately stationary,
i.e., there does exist k ∈ N such that bi = bk for each i ≥ k. In practice, widening allows us
to “short-cut” infinite ascending chains, guaranteeing that a (post-) fixpoint is eventually
reached.

Abstract domains can also be combined. Given n > 1 abstract domains 〈Ai,vi
,ui,ti,⊥i,>i〉 abstracting a concrete domain C with abstraction functions αi : C → Ai and
concretization functions γi : Ai → C for i = 1, . . . , n, their direct product is the structure
〈A,v,u,t,⊥,>〉 where:
A = A1 × · · · × An
(a1, . . . , an) v (a′1, . . . , a′n) ⇐⇒ a1 v1 a

′
1 ∧ · · · ∧ an vn a′n

(a1, . . . , an) u (a′1, . . . , a′n) = (a1 u1 a
′
1, . . . , an un a′n)

(a1, . . . , an) t (a′1, . . . , a′n) = (a1 t1 a
′
1, . . . , an tn a′n)

⊥ = (⊥1, . . . ,⊥n) and > = (>1, . . . ,>n)

1 One can also find examples of non-lattice abstract domains [19].

R. Amadini, G. Gange, P. Schachte, H. Søndergaard, and P. J. Stuckey 7:5

A drawback of the direct product is that γ may not be injective, even when all of the γi
are injective. Its use may give rise to sub-optimal precision, although it does not threaten
soundness of the analysis. For optimal precision, the reduced product A′ = A1 ⊗ · · · ⊗ An
is required [15]. Informally, A′ removes redundant tuples from A. More formally, A′ is
the quotient set of the equivalence relation ≡ on A such that (a1, . . . , an) ≡ (a′1, . . . , a′n)⇔
γ(a1, . . . , an) = γ(a′1, . . . , a′n). This ensures that the resulting γ is injective. For example, if
A1 is the parity domain and A2 is the interval domain, then (Odd, [0, 2]) and (Odd, [1, 1])
are different elements of A1 ×A2, yet they have the same meaning. In A1 ⊗A2 they are
considered one and the same.

While the reduced product has a simple mathematical definition, it can be difficult or
cumbersome to implement. A common alternative is to use ad hoc channelling functions to
refine pairs of abstract elements, with no guarantee of optimal reduction. Care is needed when
widening is defined on reduced products: The distributed operation (a1∇1a

′
1, . . . , an∇na′n)

combining the widening operators of the individual domains is not necessarily a valid widening
operation.

2.3 Language L
We now define a simple language, L, that we shall use in Sections 3 and 4 to illustrate how
symbolic execution and abstract interpretation work.

We denote by Var the set of all the variables that can occur in an L program, and with
Val the set of values that a variable of Var can take (e.g., Val may contain integers, floating
point numbers, string literals, and so on). We assume that values 0 and 1 (which may
represent falsehood and truth) always belong to Val. We denote by Loc the set of all the
locations, or program points, for a program written in L.

A concrete state, or runtime state, is a map Var → Val from variables to values. A
concrete trace τ : Var × Loc → Val ∪ {⊥,>} is a function returning the concrete state τ(x, `)
of variable x at program point ` in a given execution of the program. If τ(x, `) = ⊥, then
either ` is unreachable or x is not defined at `. If τ(x, `) = >, then the value of x at ` is
unknown.

Let Fun be the set of all the possible functions of L, i.e., the allowed operations over the
variables and values of L. We denote by Funk ⊆ Fun the set of functions having arity k, and
with BFun the set of the Boolean-valued functions (predicates), that is, the functions that
yield values in {0, 1} only. The set of expressions Exp over L is recursively defined by:

Val,Var ⊆ Exp
f ∈ Funk, e1, . . . , ek ∈ Exp =⇒ f(e1, . . . , ek) ∈ Exp

We define the set Bool ⊆ Expr of the Boolean expressions as follows:

0, 1 ∈ Bool
b(e1, . . . , ek) ∈ Exp, b ∈ BFun =⇒ b(e1, . . . , ek) ∈ Bool

A Boolean expression b ∈ Bool defines a constraint: if b can evaluate to 1, the corresponding
constraint is satisfiable; otherwise, its negation ¬b = 1− b is satisfiable (this however does
not imply that b is unsatisfiable).

Now we can define the BNF syntax of the statements of L as:

S ::= skip | x← e | x← > | S1;S2 | if b then S1 else S2 fi | while b do S od

where x ∈ Var , e ∈ Exp, b ∈ Bool, and S, S1, S2 are statements.

Gabbrielli’s Festschrift

7:6 Abstract Interpretation, Symbolic Execution and Constraints

We are deliberately vague about the values in Val and the functions in Fun because we
aim to provide a high-level view of the semantics of the symbolic execution and abstract
interpretation of L without going into too much detail.

3 Symbolic Execution

Symbolic execution was introduced with the aim of describing in a compact way the inputs
causing each part of a program to be executed or “covered”. In this section we shall see how
symbolic (and concolic) execution works for L from Section 2.

A peculiarity of L is that it allows the definition of assignments of the form x← >. We
use this to indicate that the value of x is unknown. It corresponds to an annotation required
for symbolic execution, to mark a program variable x as “symbolic”. After x← > a Boolean
expression containing x will be evaluated in terms of all the possible values that x can take
in a particular concrete trace. In the interest of generality we make no assumption about the
domain of a symbolic variable.

Rather than maintaining concrete traces, the symbolic execution of an L program defines
symbolic traces keeping track of: 1) the path π describing the evolution of the program
execution; 2) a symbolic state σ mapping variables to (symbolic) expressions; 3) a constraint
φ denoting a path condition for π, i.e., a necessary and sufficient condition, on symbolic
values, for execution to follow path π. Formally, a symbolic trace is a triple (π, σ, φ) where:
1. π ∈ (Loc × {0, 1})∗ is a tuple of branch points of the form 〈`b1

1 , . . . , `
bk

k 〉 where `i is the
location of the i-th branch point encountered along the execution path, and bi is either
0 or 1 depending on whether the corresponding condition evaluated to false or true
respectively.

2. σ : Var → Exp maps variables to expressions. We extend σ to expressions in the natural
way by defining σ : Exp→ Exp as:

σ(c) = c for each c ∈ Val
σ(x) = σ(x) for each x ∈ Var

σ(f(x1, . . . , xk)) = f(σ(x1), . . . , σ(xk)) for each k ∈ N, f ∈ Funk

3. φ = C1 ∧ · · · ∧ Ck is a conjunction of constraints denoting the path condition of π; each
Ci is either a Boolean expression (if bi = 1) or a negated Boolean expression (if bi = 0)
describing the direction taken at each branch point.

A natural way to capture the semantics of a symbolic execution is with a structural
operational semantics (SOS) representing how the symbolic trace evolves. Fig. 1 shows the
SOS definition of L’s semantics. The initial symbolic state is always (〈 〉, ∅,>), where 〈 〉 is
the empty path and > indicates a constraint that is always true. We identify σ with the set
of pairs {x 7→ e | σ(x) = e}.

The rules in line 1 of Fig. 1 are the usual rules for the skip statement and statement
sequencing.

The rules in line 2 handle variable assignment. The assignment x← e where e ∈ Expr
simply replaces the entry for x in σ with the expression resulting from the evaluation of
σ(e). The assignment x ← > enables variable x to be treated as symbolic: in this case a
fresh symbolic value x̃ is assigned to x. As we shall see, the constraints of φ are actually
constraints over these symbolic values. Because no branching point is encountered, π and φ
remain unchanged.

R. Amadini, G. Gange, P. Schachte, H. Søndergaard, and P. J. Stuckey 7:7

〈skip, (π, σ, φ)〉 → (π, σ, φ)
〈S1, (π, σ, φ)〉 → (π′, σ′, φ′)

〈S1;S2, (π, σ, φ)〉 → 〈S2, (π′, σ′, φ′)〉
(1)

σ′(v) =
{
σ(x) if v 6= x

σ(e) if v = x

〈x← e, (π, σ, φ)〉 → (π, σ′, φ)

σ′(v) =
{
σ(x) if v 6= x

x̃ if v = x

〈x← >, (π, σ, φ)〉 → (π, σ′, φ) (2)

φ ∧ σ(b) 6|= ⊥ φ′ = φ ∧ σ(b) π′ = π ⊕ `1

〈(`) if b then S1 else S2 fi, (π, σ, φ)〉 → 〈S1, (π′, σ, φ′〉
(3)

φ ∧ ¬σ(b) 6|= ⊥ φ′ = φ ∧ ¬σ(b) π′ = π ⊕ `0

〈(`) if b then S1 else S2 fi, (π, σ, φ)〉 → 〈S2, (π′, σ, φ′)〉
(4)

φ ∧ ¬σ(b) 6|= ⊥ φ′ = φ ∧ ¬σ(b) π′ = π ⊕ `0

〈(`) while b do S od, (π, σ, φ)〉 → (π′, σ, φ′) (5)

φ ∧ σ(b) 6|= ⊥ φ′ = φ ∧ σ(b) π′ = π ⊕ `1

〈(`) while b do S od, (π, σ, φ)〉 → 〈S; (`) while b do S od, (π′, σ, φ′)〉 (6)

Figure 1 Semantics of symbolic execution.

The rules in lines 3–4 show the semantics of the “if-then-else” statement. In line 3, we
first check if the constraint φ ∧ σ(b) is satisfiable with a suitable constraint solver. If so, the
“then” branch is feasible and the constraint σ(b) is added to φ. In this case, given that `
is the location of the “if-then-else” statement, we also update π with the path π′ obtained
by appending `1 to π (we use ⊕ to denote the append operation). The map σ remains
unchanged, because no symbolic variable is updated.

The rule in line 4 for the “else” branch is totally symmetric: we just consider ¬σ(b)
instead of σ(b) and append `0 instead of `1. Note that symbolic execution is nondeterministic
in the sense that at each branch point we can follow both branches. Indeed, in general, given
constraint C we might find both an assignment ξ satisfying C and one ξ′ satisfying ¬C.

The rules in lines 5–6 give the semantics of “while” loops. Rule 5 is basically the same as
rule 4, while rule 6 is similar to rule 3: the difference is that here we can execute the loop
an arbitrary number of times. This is one reason to consider symbolic execution dynamic
(unless it is somehow enriched with an oracle or some mechanism for inductive reasoning):
unlike static analysis, it may get stuck in loops. The applications to debugging and test
generation therefore make use of termination criteria based on resource consumption.

I Example 1. Fig. 2 shows a simple L program, where 〈StmtA〉 and 〈StmtB〉 are unspecified
statements. Variable y is symbolic, so before the while loop the symbolic trace is (〈 〉, {x←
0, y ← ỹ}, ∅). The y > 0 condition of the while loop at location `1 (line 3) is then evaluated.

On the one hand, we invoke a constraint solver to check if ¬σ(y > 0) = ¬(σ(y) > σ(0)) =
¬(ỹ > 0) = ỹ ≤ 0 is satisfiable (see rule 5 of Fig. 1). Assuming that ỹ has a numeric domain
with a lower bound smaller than or equal to 0, this constraint is clearly satisfiable (e.g., ỹ = 0
is a solution) so `01 is added to π, ỹ ≤ 0 is added to φ and we skip the body of the loop.

Gabbrielli’s Festschrift

7:8 Abstract Interpretation, Symbolic Execution and Constraints

x← 0;
y ← >;
while y > 0 do . Location `1

x← x+ 1;
y ← y − 2;

od;
if x > 1117 then . Location `2
〈StmtA〉;

else
〈StmtB〉;

fi

Figure 2 A simple L program.

•

•

•

8

0 > 1117

B

0 ≤ 1117

ỹ ≤ 0
•

•

•

8

1 > 1117

B

1 ≤ 1117

ỹ − 2 ≤ 0
•

•

. . .

ỹ − 4 ≤ 0
. . .

ỹ − 4 > 0

{x 7→ 2, y 7→ ỹ − 4}

ỹ − 2 > 0

σ = {x 7→ 1, y 7→ ỹ − 2}

ỹ > 0

σ = {x 7→ 0, y 7→ ỹ}

π = 〈 〉, σ = {}, φ = >

Figure 3 Top part of the symbolic execution tree for the program in Fig. 2.

On the other hand, we also consider the case where the y > 0 condition holds: we invoke
the solver to check if σ(y > 0) = ỹ > 0 is satisfiable and we keep on iterating the loop (see
rule 6 of Fig. 1). Clearly, if the domain of ỹ has no upper bound and no halting criterion
is set (e.g., a timeout or a maximum number of loops iterations) the computation will not
converge. This can be seen from the rightmost branch of the symbolic execution tree in
Fig. 3, where the constraint ỹ − 2k > 0 is repeatedly added to φ after the k-th evaluation of
the while loop condition, corresponding to a k-length path 〈`11, `11, . . . , `11〉.

The if-then-else statement at location `2 is then processed using rules 3 and 4 of Fig. 1.
In the first case, we try to solve the constraint φ∧σ(x > 1117), where φ is the path condition
at location `2. This constraint can only be satisfied if the while loop is executed k > 1117
times and ỹ− 2k ≤ 0. This invariant cannot be inferred by symbolic execution, hence to find
that 〈StmtA〉 is reachable the symbolic interpreter has to go through the while loop at least
1118 times, hoping that the resource limit is not reached earlier.

Similarly, we apply rule 4 and solve φ ∧ ¬σ(x > 1117) to reach 〈StmtB〉. y

R. Amadini, G. Gange, P. Schachte, H. Søndergaard, and P. J. Stuckey 7:9

As mentioned, the constraints of φ form a path condition because they refer to the
conditions under which a path π is feasible, i.e., π is feasible if and only if φ is satisfiable. It
is important to note that symbolic execution welcomes the definition of branch points and
program paths, but in general has no notion of program points. If we define loc(π) as the set
of all the program points traversed along the execution of path π, a path condition φ for π is a
sufficient condition to cover all the locations of loc(π). However, φ is not necessary: different
path conditions φ′, φ′′, φ′′′, . . . not entailing φ can equally cover loc(π). Think for example
of Fig. 2: statement 〈StmtB〉 can be reached via π = 〈`11, `01, `02〉 (the while loop is executed
once) with associated path condition φ = ỹ > 0∧ ỹ−2 ≤ 0, and π′ = 〈`11, `11, `01, `02〉 (the while
loop is executed twice) with associated path condition φ′ = ỹ > 0∧ ỹ−2 > 0∧ ỹ−4 ≤ 0. Both
these paths cover the same program points: loc(π) = loc(π′), even if π 6= π′ and φ ∧ φ′ |= ⊥.

The output of symbolic execution for a given program is a set Θ of symbolic traces,
each of which corresponds to a path from the entry point of the program to its end point
(including truncated paths if a termination criterion, e.g., a timeout, is met). We can define
the set T(Θ) of all the concrete traces corresponding to Θ as:

T(Θ) =
⋃

(π,σ,φ)∈Θ

{
(x, `) 7→ if ` ∈ loc(π) then [[σ(x)]]ξ else >

∣∣∣ ξ |= φ
}

where [[·]]ξ : Exp→ Val is recursively defined by:

[[c]]ξ = c for each c ∈ Val
[[x]]ξ = ξ(x) for each x ∈ Var

[[f(e1, . . . , ek)]]ξ = f([[e1]]ξ, . . . , [[ek]]ξ) for each k ∈ N, f ∈ Funk

Each symbolic trace (π, σ, φ) ∈ Θ can be unfolded into k concrete traces following π, where k
is the (possibly infinite) number of solutions of path condition φ. Note that if a location ` is
uncovered by a symbolic trace, we are not able to say that ` is unreachable in general because,
as seen above, symbolic execution may miss concrete states. The set T(Θ) is therefore an
under-approximation of the set of all the feasible concrete states for a given program, i.e.,
there may exist a feasible concrete trace τ 6∈ T(Θ).

3.1 Concolic Testing
Historically, symbolic execution was suggested as a way of generating compact suites of test
inputs, i.e., small sets producing large coverage. However, a number of issues have hindered
its spread. Among these, we mention:
1. the source program may call library functions or make system calls
2. the underlying constraint solver may not be efficient or expressive enough to solve a given

path condition
3. even simple programs tend to generate huge numbers of paths.
Concolic testing (or dynamic symbolic execution) was proposed [20] to overcome the first
issue. Concolic is a portmanteau for concrete/symbolic, as concolic testing is a hybrid,
maintaining both concrete and symbolic states, while executing a program. Thus, it has to
be seeded with concrete values for symbolic variables. As it executes, concolic testing records
alternative path constraints that can lead to new execution paths. A constraint solver is
used to decide which ones are feasible and to provide new concrete inputs for the next path
to explore.

Gabbrielli’s Festschrift

7:10 Abstract Interpretation, Symbolic Execution and Constraints

Formally, we can define a concolic trace as a quadruple (ρ, π, σ, φ) where ρ : Var → Val
is a concrete state and (π, σ, φ) is a symbolic trace. The concrete state ρ defines assignments
of concrete values to symbolic variables. Each L assignment x ← > denoting a symbolic
variable x is repeatedly replaced with a concrete assignment x← ρ(x), where the value ρ(x)
is decided at each iteration of the concolic testing according to the path condition found in
the previous concolic iteration.

The semantics of concolic testing is very similar to that of symbolic execution. The main
difference is that we actually execute the program, because symbolic variables now also take
concrete values. So, the concolic execution is purely deterministic. The constraint solver
is not used to evaluate the conditions at each branch point, because they are evaluated at
runtime while executing the program. Instead, it is used to generate the concrete values to
be assigned to the corresponding symbolic variables in the next concolic iteration.

Path conditions φ are recorded as for the symbolic execution. At the end of the concrete
execution, a constraint C is removed from φ (typically the last). Then, a constraint solver is
used to solve φ ∧ ¬C. If there is a solution, we have new input values that will be used to
feed the symbolic variables at the next iteration. Otherwise, the concolic process backtracks
and a new constraint, not already negated, will be flipped. This process is repeated until all
the constraints of φ are negated (or a termination criterion is met).

I Example 2. Let us see how concolic testing works on the L program in Fig. 2. Let us
suppose that initially the value 0 is assigned to symbolic variable y (i.e., ρ(y) = 0). Both
the conditions of the while loop and the “if” statement evaluate to false, so the concrete
execution reaches statement 〈StmtB〉 with path condition φ = ¬(y > 0) (condition x > 1117
is not considered because x is not symbolic).

Then, ¬(y > 0) is negated and a constraint solver will be used to solve y > 0. Assuming it
returns the solution y = 1, we have a new concrete state (i.e., ρ(y) = 1) and hence we repeat
the concrete execution by setting y ← 1. In this case, the loop is executed exactly once and
〈StmtB〉 is reached again, but this time with path condition φ = y > 0 ∧ ¬(y − 2 > 0). So
we flip ¬(y − 2 > 0) (we cannot flip y > 0, because it was already negated) and we solve
y > 0 ∧ y − 2 > 0.

Assuming the solver returns the solution y = 3, we repeat the concrete execution by
setting y ← 3 and so on, until all the constraints have been negated or the termination
criterion is met. Note that the convergence of concolic testing also depends on the generated
solutions. For example, if the solution of y > 0 was y = 5000 we would have reached 〈StmtA〉
right after the first iteration (by executing, however, the while loop 2500 times). y

Concolic testing yields a set of concolic traces Γ containing both the concrete states
and the symbolic traces for each explored path. From this point of view, concolic testing
generalizes symbolic execution and we may define the concrete traces corresponding to Γ
as T({(π, σ, φ) | (ρ, π, σ, φ) ∈ Γ}). However, often the symbolic computation is only used to
generate the next input, so the path conditions can be overwritten at each concolic iteration
– there is no need to keep track of them. We can therefore consider the output of concolic
testing simply as {ρ | (ρ, π, σ, φ) ∈ Γ}.

Concolic testing can be seen as an under-approximation of symbolic execution because
it only considers a witness for each explored path, i.e., a solution for each path condition.
Instead, symbolic execution defines invariants over program paths, i.e., necessary and
sufficient conditions for the paths to be feasible. The ultimate goal of concolic testing is not
to characterize the paths explored, but to maximize the overall coverage of a program, which
we can define as the set

⋃
π loc(π) of all the locations traversed by any explored path π of Γ.

R. Amadini, G. Gange, P. Schachte, H. Søndergaard, and P. J. Stuckey 7:11

Concolic testing alleviates some of the issues of symbolic execution. Indeed, we can
perform concolic testing without modelling library functions, system calls or third-party
software by directly invoking all the functions. Constraint solving is more lightweight because
constraints are simplified by the replacement of symbolic variables with concrete values.
Importantly, we can simply ignore or approximate unsupported constraints. In this way,
completeness is sacrificed but what is gained is that symbolic execution can proceed more
smoothly. In many practical applications this is totally acceptable, provided that “good
enough” coverage is achieved in reasonable time.

Thanks to a greater simplicity and efficiency w.r.t. symbolic execution, as well as the
progress made by constraint solvers over the last years, concolic testing as become increasingly
popular, and several concolic testing frameworks have been developed (e.g., DART [20],
CUTE [34], jCUTE [33], KLEE [10]). The most recent tools for symbolic execution of C
achieve considerable performance gains, for example by utilising tools that can perform
runtime instrumentation of binary code (QSYM [38]), albeit at the cost of architecture
dependence, or by compiling symbolic execution directly into LLVM bitcode (SymCC [29]),
rather than interpreting bitcode, as done by KLEE.

4 Abstract Interpretation

Abstract interpretation is a well-established framework for static analysis. It is commonly
used for invariant generation, i.e., for inferring program properties that hold for each possible
program execution. To do so, it makes use of abstract domains for approximating sets of
concrete runtime states.

Abstract interpretation is in a sense dual to symbolic execution. Indeed, plain symbolic
execution under-approximates the set of possible concrete traces and can prove reachability
(a semi-decidable problem in general). Analyses based on abstract interpretation usually over-
approximate the set of concrete states, which means they can sometimes prove unreachability.
However, one thing in common between these techniques is that they both, implicitly or
explicitly, collect constraints along their execution. For symbolic (and concolic) execution,
this aspect is evident. For abstract interpretation, we just have to make a little effort to see
that abstract domains actually represent constraints defining invariant properties over the
program variables.

For example, if the abstract value for an integer variable x is Even, the associated
constraint is x = 2k with k ∈ Z. The direct product implicitly defines constraint conjunctions,
e.g., (Even, Pos, [−3, 8]) corresponds to the constraint x = 2k ∧ x > 0 ∧ −3 ≤ x ≤ 8, whose
feasible solutions are {2, 4, 6, 8}. A reduced product would refine these constraints into
x = 2k ∧ x > 0 ∧ 2 ≤ x ≤ 8. In the constraint solving world, we are typically only interested
in finding a feasible solution. Abstract interpretation aims instead to find a minimal set of
constraints wrapping all the feasible solutions. The abstract domains define what type of
constraints we are allowed to use to describe the invariants.

The link between constraints and abstract interpretation is clearer when we consider
relational abstract domains. The simple non-relational domains seen above are efficient and
easy to implement, but do not take into account the relations between variables, and thus
tend to be imprecise. Relational domains instead are actually constraints capturing the
relations between different variables. Examples of well known relational domains for numeric
abstractions include linear congruence [22], octagons [27], and convex polyhedra [16]. For
instance, the domain of convex polyhedra uses linear constraints of the form a1x1+· · ·+anxn ≤
b, where the xi are variables and the ai, b are constants, to model the invariants. This domain
offers considerable precision but also has high computational complexity (exponential in the
worst case).

Gabbrielli’s Festschrift

7:12 Abstract Interpretation, Symbolic Execution and Constraints

Formally defining a semantics as done in Section 3 capturing the abstract execution
is not easy because there can be different ways of conducting the analysis and computing
the invariants. For example, abstract domains can change dynamically (e.g., the CEGAR
approach guides abstraction refinement via counter-example generation [11]). Moreover,
unlike symbolic execution, abstract interpretation is not necessarily executed in a forward
way. Instead of following the rules of an operational semantics, it effectively reasons about
the execution flow of the program.

If Abs is a collection of abstract domains, we can define the abstract state for a given
program as a map Var →

⋃
Abs from program variables to abstract elements. We denote

the abstract trace with a pair (δ, λ) where δ : Var → Abs maps program variable x to the
chosen abstract domain δ(x) for it (including domain products and relational domains) and
λ : Var × Loc →

⋃
Abs returns the abstract element λ(x, `) ∈ δ(x) for x at program point

` (for simplicity, we assume that δ never varies during the program analysis). If variables
x1, . . . , xk are abstracted with the same relational domain, then δ(x1) = · · · = δ(xk) and
λ(x1) = · · · = λ(xk).

For example, given variable x and location `, if δ(x) is the domain of intervals we may
have λ(x, `) = [−2, 7] but not λ(x, `) = Even. If δ(x) = Parity ⊗ Sign, a valid abstract
element is λ(x, `) = (Odd,NotPos). If both δ(x) and δ(y) are the octagon domain, we can
have λ(x, `) = λ(y, `) = {x+ y ≤ 3,−x+ y ≤ 0,−x ≤ 5, y ≤ −1} while, e.g., {x2 + y2 ≤ 1}
is not a valid octagon.

We can define the abstract execution as the process of deriving the abstract trace (δ, λ)
for a given program. In fact, here we can have at most one abstract trace per program,
and not a collection of traces as happens for symbolic and concolic execution. This holds
because the abstract trace over-approximates all the feasible concrete traces of the program.
At a high level, abstract execution for L follows the control flow graph and updates (δ, λ)
according to the statement encountered, e.g.:

Initially λ(x, `) = ⊥δ(x) for each program variable x and location `, except for the location
`0 of the entry point of the program, for which λ(x, `0) = >δ(x).
For (`) x← e (`′), the abstract value λ(x, `′) is defined according to the transfer function
for the concrete expression e. For relational domains, we may also update λ(y, `′) for
each variable y occurring in e.
For (`) if b then (`1) S1 (`′1) else (`2) S2 (`′2) fi (`3), condition b is used to refine
the abstract elements λ(x, `1) and condition ¬b is used to refine the abstract elements
λ(x, `2) for each variable x involved in b. Once S1 and S2 are processed, the control
flow merges and so we join the abstract value of each variable occurring in S1 or S2:
λ(x, `3) = λ(x, `′1) tδ(x) λ(x, `′2).
For (`) while b do (`1) S (`′1) od (`2), condition b is used to refine the abstract elements
λ(x, `1) and then the widening operation λ(x, `1)∇δ(x)λ(x, `′1) is repeatedly applied until
a fixpoint is reached. Condition ¬b is used to refine λ(x, `), and then the join operation
is applied between such refined abstract element and the “stationary’ element computed
by ∇.

I Example 3. Consider again the L program in Fig. 2. Suppose that for variables x and y
we chose the sign domain and the interval domain respectively. At location `1, just before the
while loop, we have λ(x) = Zero and λ(y) = >. At location `2, just before the if-then-else
statement, the abstract execution is able to determine that we have λ(x) = NotNeg (i.e.,
x ≥ 0) and λ(y) = (−∞, 0]. However, a more precise analysis would be able to infer that
y ∈ [−1, 0]. Even more precisely, a relational analysis may detect the invariant 2x+y−y0 = 0
where y0 is the value of y before entering the while loop. y

R. Amadini, G. Gange, P. Schachte, H. Søndergaard, and P. J. Stuckey 7:13

Each invariant λ(x, `) is to all effects a constraint over the possible values that x can take
at location `. The type of this constraint is defined by δ(x): we have unary constraints for
non-relational domains, conjunctions of constraints for domain products, and (conjunctions
of) k-ary constraints for relational domains involving k variables. If we denote with [[a]]A the
constraint corresponding to an abstract element a ∈ A, we can define the set of the concrete
traces corresponding to an abstract trace (δ, λ) as:

T(δ, λ) = {(x, `) 7→ ξ(x) | ξ |= [[λ(x, `)]]δ(x)}.

In practice, for each x ∈ Var and ` ∈ Loc, we associate to the pair (x, `) the concrete value
ξ(x), where ξ is a solution for the constraint corresponding to the abstract element λ(x, `).

As mentioned, abstract execution returns a single abstract trace for each program. In
general, if T∗ is the set of all the feasible concrete traces for a given program, Θ is the set of
the symbolic traces resulting from a symbolic execution of that program, and (δ, λ) is the
abstract trace resulting from its abstract execution, we have that:

T(Θ) ⊆ T∗ ⊆ T(δ, λ).

In other words, symbolic execution under-approximates the feasible concrete states, while
abstract interpretation over-approximates them. Again, the assumption made here is that
symbolic execution operates without assistance from oracles or added induction tools. More-
over, we assume that the underlying abstract execution is sound.

5 Synergy

In this section we bring things together by discussing some synergies between the worlds of
symbolic execution, abstract interpretation, and constraint solving. In particular, we show
how abstract interpretation can enrich symbolic execution through program transformation.

5.1 Abstract interpretation and constraint solving
As seen in Section 4, there is an implicit bond between abstract interpretation and constraint
solving. Because the invariants computed by abstract interpretation are actually constraints
over-approximating concrete states, constraint solvers can be used to improve the precision
of the analysis by refining the abstract domains. Constraint solving can soundly rule out
infeasible configurations and possibly detect unsatisfiability. Moreover, it can be used
to generate counterexamples. For example, Ponsini, Michel and Rueher [30] present a
hybrid approach for the abstract interpretation of floating-point programs using constraint
programming to tighten the abstract domains and therefore reduce the number of false
alarms.

What constraint solving can learn from abstract interpretation is the use of abstract
domains to represent the domain of the decision variables and the relations between them
– especially for non-trivial, structured types. For example, the dashed string abstraction
introduced in [3] for string constraint solving is based on the Bricks abstract domain introduced
in [13] for the analysis of strings.

5.2 Symbolic execution and constraint solving
Constraint solving and symbolic (and concolic) execution are strongly coupled because path
conditions are iteratively solved with an underlying constraint solver. The expressiveness and
the efficiency of the solver have huge impact on the performance of the symbolic execution: the

Gabbrielli’s Festschrift

7:14 Abstract Interpretation, Symbolic Execution and Constraints

better the solver, the better the symbolic execution. Arguably, the remarkable improvements
of constraint solvers over the last decades positively affected the development of symbolic
and concolic execution frameworks.

Symbolic execution can also help the development of new and better constraint solvers.
The path conditions arising from program analysis can suggest the development of new types
of variables, constraints and search heuristics (e.g., aggregate types and complex operations)
and be used as benchmarks – generated for free from the program source – to validate and
evaluate constraint solvers.

5.3 Abstract interpretation and symbolic execution
Somehow, abstract interpretation is performed by “symbolically” executing the input program,
not necessarily in a forward way, using abstract values instead of the concrete ones. In
principle, because it works by over-approximations, it can only generate false positives. In
practice, unsound domains are sometimes used: in this way, we can also have false negatives.
Symbolic (or concolic) execution might be used to post-process the abstract execution via
counterexample generation w.r.t. a property φ of interest, provided that we can encode that
φ with a corresponding Boolean expression b in the input language. In this way, we can check
if φ (or ¬φ) holds at program point ` by inserting at that point an “if-then-else” construct
having guard condition b.

What is probably more interesting is instead the other way round: how abstract interpre-
tation can help symbolic execution.

For example, a common problem for “classical” symbolic execution, as we defined it in the
previous sections, is that it often gets stuck exploring loops for an intolerably long time. This
happens because usually symbolic execution makes no attempt to reason about a program –
all it does is following the rules defined by the transition system of its operational semantics.
Abstract interpretation, on the other hand, steps outside of the operational semantics of
symbolic execution by reasoning about loops rather than simply executing them.

Abstract interpretation can be used transform the source program in a target program
where symbolic execution can escape loops. For example, loop counters can sometimes aid
the abstraction enhanced symbolic execution [2]. The addition of counters does not interfere
with the semantics of the program – it is essentially a semantics-preserving transformation.
The kind of source-to-source transformations that aim to preserve some testing metric
(but possibly not the semantics of the program) are called testability transformations [23].
Examples include the merging or splitting of loops, induction variable substitution, changing
the type of a variable from float to int, and others [23].

A possible way of enriching the symbolic execution of the L language is to augment it
with assumptions, whose purpose is to actually replace the while loops with the invariants
that abstract interpretation yields at the end of each loop. In practice, for transforming
while loops into corresponding “assume” statements, we replace rule 6 of Fig. 1 with:

φ ∧ σ(b) 6|= ⊥ b′ =
∧
x∈S [[λ(x, `)]]δ(x) σ′(x) =

{
x̃ if x ∈ S
σ(x) if x 6∈ S

〈while b do S od (`), (π, σ, φ)〉 → 〈(`) assume b′, (π, σ′, φ)〉

where b′ =
∧
x∈S [[λ(x, `)]]δ(x) is the conjunction of all the constraints corresponding to the

invariant λ(x, `), for each variable x occurring in statement S. Note that this rule does not
modify either the path π or the path condition φ. However, map σ is updated by assigning
a new, fresh variable x̃ to each variable x occurring in statement S. This somehow has
the effect of forgetting the history of these variables, in order to avoid conflicts with the
introduced invariant b′.

R. Amadini, G. Gange, P. Schachte, H. Søndergaard, and P. J. Stuckey 7:15

The rule for the assume statement is simply defined as:

φ ∧ σ(b) 6|= ⊥ φ′ = φ ∧ σ(b) π′ = π ⊕ `1

〈(`) assume b, (π, σ, φ)〉 → (π′, σ, φ′)

Clearly this kind of loop elimination can introduce false positives, but it allows symbolic
execution to escape loops (the more precise the abstract execution is, the less likely this is to
generate false positives). This transformation relies on the fact that test data generation is a
forgiving application: the possibility of path divergence [4] is already a reality in concolic
testing, and the damage risked is simply the generation of sub-optimal test sets. One can
also consider a parametric approach where the while loop is executed at most k times: if
after k iterations the loop condition still holds, then the while loop is transformed.

I Example 4. Consider once again the L program in Fig. 2. Let us suppose that the
abstract interpretation is conducted with the interval domain, so after the while loop we
have the following invariants: λ(x, `) = [0,+∞) and λ(y, `) = (−∞, 0] where ` is the
location corresponding to the end of the loop (line 6). If we apply the loop elimination
described above, we set σ = {x ← x̃, y ← ỹ} and we replace the while statement with:
(`) assume x ≥ 0 ∧ y ≤ 0.

Then, the assume statement is evaluated and the symbolic execution can proceed with the
evaluation of the “if-then-else” statement. Clearly, this approach ensures the termination of
the symbolic execution but it does not guarantee its soundness. For example, the evaluation
of the “if” condition x > 1117 can succeed with solution x̃ = 1118, ỹ = 0 not corresponding
to any feasible concrete state. However, with more precise (and relational) domains many of
these spurious configurations can be ruled out (e.g., by adding the invariant 2x̃+ ỹ − y0 = 0
where y0 is the value of y before executing the while loop) y

6 Related Work

A number of systems for program verification have been based on symbolic execution.
VeriFast [24] uses separation logic to verify various properties of (subsets of) C and Java,
including properties of functions that manipulate inhabitants of recursively defined data
types such as lists and trees.

The KeY project [6] (https://www.key-project.org/) is an active Java program verifi-
cation project. KeY uses a sequent-based dynamic logic. Users can provide method contracts
and loop invariants, with system support for checking the validity of invariants. The system
can then use the invariants in place of the loops that are thus abstracted. This may simplify
the verification task, and solve the problem of symbolic execution getting caught in loops
(naturally, if the abstraction is too imprecise, it may also fail to enable a desired proof).
Abstraction can also be used to model components for which the source code is unavailable.
For consistency, such models must over-approximate the possible runtime states (in contrast
to the “concretizing” approach used by concolic testing tools).

Of particular interest in our context is the integration of abstract interpretation with
KeY [37]. The symbolic execution based reasoning about the values that a variable can
take is interleaved with reasoning about value sets (which are elements of abstract domains),
and as a result, some invariants can be generated automatically. The abstract domains may
be refined in the process. From available descriptions, it appears that values, rather than
program states, are abstracted (so that relational analysis is excluded).

It is interesting to compare the KeY project’s use of abstraction in symbolic execution
based verification with the use we suggest for concolic testing. A static analysis that provides
“attribute independent” (or non-relational) abstraction can be of great value in the verification

Gabbrielli’s Festschrift

https://www.key-project.org/

7:16 Abstract Interpretation, Symbolic Execution and Constraints

context, but it is of little use to concolic testing. To be of any value, an oracle for a concolic
testing tool has to be able to provide non-trivial information about how the values of
different variables are related. Fortunately, the availability of sophisticated tools for abstract
interpretation allows a clean separation of concern, effectively providing us with a highly
parametric oracle.

Another application with a very focused aim is the static analysis used by Feist et al. [18]
to identify “use after free” vulnerabilities in a binary-code. Static analysis is used to compute
“weighted slices” which are then used to guide DSE. The weight attached to a slice reflects
the degree to which the slice is able to include an “allocate then free then use” pattern for
some pointer variable.

Shastry et al. [35] apply static analysis to improve non-grammar based fuzzing. A
simple static analysis is used to construct better fuzzing input dictionaries. Normally such
dictionaries are created based on string literals found in the program under analysis. Shastry
et al. show how a kind of taint analysis combined with backward slicing can help generate
more effective dictionaries in the context of network applications.

Adding loop counters as a benign transformation to facilitate better analysis is also seen
in work on abstract domains [36] and in symbolic execution. For example, the “loop-extended”
grammar-based symbolic execution proposed by Saxena et al. [32] involves adding a new
symbolic variable (or trip count) per loop. The trip count is related to the program’s input
format through further auxiliary variables, to capture how variables assigned in loops depend
on the lengths and counts of elements in the program input. Godefroid and Luchaup [21]
identify unbounded loops that use induction variables (in a linear manner). These loops
are summarized by pre- and post-conditions, derived from inferred partial loop invariants,
relating program inputs to the values of induction variables. No static analysis is involved in
this.

7 Discussion

This paper has explored interactions between abstract interpretation, symbolic execution
and constraint solving. We exposed the – sometimes implicit – bond that constraints have
with both symbolic execution and abstract interpretation, and we put forward a view that
symbolic execution is best considered a dynamic analysis.

We discussed a way of helping concolic testing escape loops via abstract interpretation
and program transformation. In a context of under-approximating dynamic analysis it may,
at first, seem surprising that an over-approximating static analysis can be of help. Indeed, it
can be of help only because it can approximate sets of program states, rather than simply sets
of values. That is, unlike the dynamic analysis, the static analysis can contribute relational
information. We believe that this tells us something new and important about the nature of
dynamic vs static analysis.

A variety of characterizations and definitions can be found in the literature, the most
common one being that static analysis is an analysis that is valid for any execution of the
program. In a similar vein, Tom Ball [5] characterises static analysis as “program centric” as
opposed “input centric” dynamic analysis. He also sees the higher precision of information
gained through dynamic analysis as an important characteristic.

We suggest that another important distinction is between what may be termed value
oriented and state oriented analysis. Dynamic analysis, symbolic execution included, is
usually value oriented: a “symbolic” runtime state is a mapping from variables to symbolic
expressions, the latter describing sets of concrete values. Abstract interpretation, in contrast,

R. Amadini, G. Gange, P. Schachte, H. Søndergaard, and P. J. Stuckey 7:17

bases itself on a “collecting semantics”, associating possible runtime states with each program
point. An “abstract” runtime state is sometimes designed as a mapping from variables to
abstract values (describing sets of concrete values), but it does not have to be a mapping.
It could be a more fine-grained description in the form of a relation that describes a set of
concrete runtime states. We have exemplified how this can be used to improve applications
of symbolic execution, such as concolic testing. The only relational information considered
by a concolic testing tool is how program variables may depend on input, that is, how they
are related to symbolic variables (as expressed through path constraints). A static analysis
can expose more complex relations between variables, thus providing additional information
about runtime states – information that, for example, a test-data generating constraint solver
can utilise.

In future work we would like to revisit the points made here, and develop a proper
framework that can serve as a formal foundation for this discussion.

References
1 W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, and M. Ulbrich, editors.

Dedecutive Software Verification – The KeY Book, volume 10001 of Lecture Notes in Computer
Science. Springer, 2016.

2 Eman Alatawi, Harald Søndergaard, and Tim Miller. Leveraging abstract interpretation for
efficient dynamic symbolic execution. In G. Rosu, M. Di Penta, and T. N. Nguyen, editors,
Proc. 32nd IEEE/ACM Int. Conf. Automated Software Engineering, pages 619–624. IEEE
Comp. Soc., 2017.

3 Roberto Amadini, Graeme Gange, Peter J. Stuckey, and Guido Tack. A novel approach to
string constraint solving. In J. C. Beck, editor, Proc. 23rd Int. Conf. Principles and Practice
of Constraint Programming, volume 10416 of Lecture Notes in Computer Science, pages 3–20.
Springer, 2017. doi:10.1007/978-3-319-66158-2_1.

4 Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and Irene Finocchi.
A survey of symbolic execution techniques. ACM Computing Surveys, 51(3):50:1–50:39, 2018.

5 Thomas Ball. The concept of dynamic analysis. In O. Nierstrasz and M. Lemoine, editors,
Software Engineering – ESEC/FSE’99, volume 1687 of Lecture Notes in Computer Science,
pages 216–234. Springer, 1999.

6 Bernhard Beckert, Vladimir Klebanov, and Benjamin Weiß. Dynamic logic for Java. In
Deductive Software Verification – The KeY Book, volume 10001 of Lecture Notes in Computer
Science, pages 49–106. Springer, 2016.

7 Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press,
2009.

8 Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. SELECT: A formal system for testing
and debugging programs by symbolic execution. ACM SIGPLAN Notices, 10(6):234–245,
1975.

9 R. M. Burstall. Program proving as hand simulation with a little induction. In Information
Processing: Proc. IFIP Congress 1974, pages 308–314. North-Holland, 1974.

10 Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In Proc. 8th USENIX Conf.
Operating Systems Design and Implementation, volume 8, pages 209–224, 2008.

11 Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In E. Allen Emerson and A. Prasad Sistla,
editors, Computer Aided Verification: Proc. 12th Int. Conf., volume 1855 of Lecture Notes in
Computer Science, pages 154–169. Springer, 2000.

12 Agostino Cortesi and Matteo Zanioli. Widening and narrowing operators for abstract interpre-
tation. Computer Languages, Systems and Structures, 37(1):24–42, 2011.

Gabbrielli’s Festschrift

https://doi.org/10.1007/978-3-319-66158-2_1

7:18 Abstract Interpretation, Symbolic Execution and Constraints

13 Giulia Costantini, Pietro Ferrara, and Agostino Cortesi. A suite of abstract domains for static
analysis of string values. Software Practice and Experience, 45(2):245–287, 2015.

14 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proc. 4th ACM Symp.
Principles of Programming Languages (POPL’77), pages 238–252. ACM, 1977.

15 Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks. In
Proc. 6th ACM SIGACT-SIGPLAN Symp. Principles of Programming Languages (POPL’79),
pages 269–282. ACM, 1979.

16 Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear constraints among
variables of a program. In Proc. Fifth ACM Symp. Principles of Programming Languages
(POPL’78), pages 84–97. ACM, 1978.

17 George B. Dantzig. Linear programming. Operations Research, 50(1):42–47, 2002.
18 Josselin Feist, Laurent Mounier, Marie-Laure Potet, Sébastien Bardin, and Robin David.

Finding the needle in the heap: Combining static analysis and dynamic symbolic execution
to trigger use-after-free. In Proceedings of the 6th ACM Workshop on Software Security,
Protection, and Reverse Engineering, pages 2:1–2:12. ACM, 2016.

19 Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J. Stuckey.
Abstract interpretation over non-lattice abstract domains. In F. Logozzo and M. Fähndrich,
editors, Static Analysis, volume 7935 of Lecture Notes in Computer Science, pages 6–24.
Springer, 2013.

20 Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed automated random
testing. In Proc. ACM SIGPLAN Conf. Programming Language Design and Implementation
(PLDI’05), pages 213–223. ACM, 2005. doi:10.1145/1065010.1065036.

21 Patrice Godefroid and Daniel Luchaup. Automatic partial loop summarization in dynamic
test generation. In Proc. 2011 Int. Symp. Software Testing and Analysis (ISSTA’11), pages
23–33. ACM, 2011. doi:10.1145/2001420.2001424.

22 Philippe Granger. Static analysis of linear congruence equalities among variables of a program.
In Samson Abramsky and T. S. E. Maibaum, editors, TAPSOFT’91: Proc. Int. Joint Conf.
Theory and Practice of Software Development, Volume 1: Colloquium on Trees in Algebra and
Programming (CAAP’91), volume 493 of Lecture Notes in Computer Science, pages 169–192.
Springer, 1991.

23 Mark Harman, Lin Hu, Rob Hierons, Joachim Wegener, Harmen Sthamer, André Baresel,
and Marc Roper. Testability transformation. IEEE Transactions on Software Engineering,
30(1):3–16, 2004.

24 Bart Jacobs, Jan Smans, and Frank Piessens. A quick tour of the VeriFast program verifier.
In K. Ueda, editor, Programming Languages and Systems: Proc. 8th Asian Symp., volume
6461 of Lecture Notes in Computer Science, pages 304–311. Springer, 2010.

25 James C. King. Symbolic execution and program testing. Communications of the ACM,
19(7):385–394, 1976.

26 Jean-Louis Laurière. A language and a program for stating and solving combinatorial problems.
Artificial Intellgence, 10(1):29–127, 1978.

27 Antoine Miné. The Octagon abstract domain. Higher-Order and Symbolic Computation,
19(1):31–100, 2006.

28 Ugo Montanari. Networks of constraints: Fundamental properties and applications to picture
processing. Information Sciences, 7:95–132, 1974.

29 Sebastian Poeplau and Aurélien Francillon. Symbolic execution with SymCC: Don’t interpret,
compile! In Proc. 2020 USENIX Security Symp. USENIX, 2020. Could not find this on the
USENIX Security 20 web site.

30 Olivier Ponsini, Claude Michel, and Michel Rueher. Verifying floating-point programs with con-
straint programming and abstract interpretation techniques. Automated Software Engineering,
23(2):191–217, 2016.

https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/2001420.2001424

R. Amadini, G. Gange, P. Schachte, H. Søndergaard, and P. J. Stuckey 7:19

31 F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming. Elsevier,
2006.

32 Prateek Saxena, Pongsin Poosankam, Stephen McCamant, and Dawn Song. Loop-extended
symbolic execution on binary programs. In Proc. 18th Int. Symp. Software Testing and Analysis
(ISSTA’09), pages 225–236. ACM, 2009. doi:10.1145/1572272.1572299.

33 Koushik Sen and Gul Agha. CUTE and jCUTE: Concolic unit testing and explicit path
model-checking tools. In T. Ball and R. B. Jones, editors, Computer Aided Verification: Proc.
18th Int. Conf., volume 4144 of Lecture Notes in Computer Science, pages 419–423. Springer,
2006.

34 Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A concolic unit testing engine for
C. In Proc. 10th European Software Engineering Conf., pages 263–272. ACM, 2005. doi:
10.1145/1081706.1081750.

35 Bhargava Shastry, Markus Leutner, Tobias Fiebig, Kashyap Thimmaraju, Fabian Yamaguchi,
Konrad Rieck, Stefan Schmid, Jean-Pierre Seifert, and Anja Feldmann. Static program analysis
as a fuzzing aid. In M. Dacier, M. Bailey, M. Polychronakis, and M. Antonakakis, editors,
Research in Attacks, Intrusions, and Defenses: Proc. 20th Int. Symp. (RAID’17), volume
10453 of Lecture Notes in Computer Science, pages 26–47. Springer, 2017.

36 Arnaud J. Venet. The Gauge domain: Scalable analysis of linear inequality invariants. In
P. Madushan and S. A. Seshia, editors, Computer Aided Verification, volume 7358 of Lecture
Notes in Computer Science, pages 139–154. Springer, 2012.

37 Nathan Wasser, Reiner Hähnle, and Richard Bubel. Abstract interpretation. In Deductive
Software Verification – The KeY Book, volume 10001 of Lecture Notes in Computer Science,
pages 167–189. Springer, 2016.

38 Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. QSYM: A practical concolic
execution engine tailored for hybrid fuzzing. In Proc. 27th USENIX Security Symp., pages
745–761. USENIX, 2018.

Gabbrielli’s Festschrift

https://doi.org/10.1145/1572272.1572299
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750

	Introduction
	Preliminaries
	Constraint solving
	Abstract interpretation
	Language L

	Symbolic Execution
	Concolic Testing

	Abstract Interpretation
	Synergy
	Abstract interpretation and constraint solving
	Symbolic execution and constraint solving
	Abstract interpretation and symbolic execution

	Related Work
	Discussion

